The 2-Dimensional INADEQUATE N.M.R. Experiment for Carbon Connectivity Pattern Determination of a New Bis-nor-diterpene

Angelo C. Pinto, *a Walmir S. Garcez, William E. Hull, Andras Neszmelyi, and Gabor Lukacs*d

Iniversidade Federal do Rio de Janeiro, Nucleo de Pesquisas de Produtos Naturais, 21941 Rio de Janeiro, Brazil

^b Bruker Analytische Messtechnik, Am Silberstreifen, D-7512 Rheinstetten-Fo., Germany

 Central Research Institute for Chemistry of the Hungarian Academy of Sciences, Budapest, Pusztaszeri ut, Hungary

d Institut de Chimie des Substances Naturelles du C.N.R.S., 91190 Gif-sur-Yvette, France

A new bis-nor-diterpene has been isolated from *Vellozia bicolor*; its structure has been established with the help of natural abundance ¹³C–¹³C coupling constants observed *via* double quantum coherence.

A phytochemical survey of Brazilian Velloziaceae has permitted recently the isolation, from *Vellozia bicolor* L. B. Smith, of a new bis-nor-diterpene whose structural elucidation and natural abundance one-bond ¹³C-¹³C coupling constants are reported here, determined with the help of 'INADE-QUATE' n.m.r. experiments.^{1,2}

The molecular formula of the bis-nor-diterpene (1), m.p. 179–181 °C, $[\alpha]_{D}^{22}$ –16.5° (c 1.08, CHCl₃), $C_{18}H_{28}O_{3}$, was established by microanalysis and by mass spectrometry [m/z]292 (M^{+})]. Its 400 MHz ¹H n.m.r. spectrum (CDCl₃) displayed three methyl singlets at δ 0.92, 0.92, and 1.33, and a number of complex multiplet signals. Carbon-13 n.m.r. spectral analysis of (1) was accomplished at 100.62 MHz with a Bruker WM-400 spectrometer using Freeman's 2-dimensional² and 1-dimensional¹, 'INADEQUATE' techniques. A solution of (1) was prepared in $[{}^{2}H_{5}]$ pyridine [470 mg of (1) in 2 ml of solvent] and the spectrum, optimized for the 2dimensional experiment at ${}^{1}J_{cc} = 40$ Hz ($J\tau = 1/4$), was accumulated at 60 °C overnight using a relaxation delay of 3.0 s. Quadrature detection in both directions was employed. The spectral width for F_1 was ± 7353 Hz and for F_2 was 7353 Hz. This spectrum has afforded, except for the C-10-C-20

linkage, an unambiguous carbon connectivity pattern as well as precise carbon-13 signal assignments for (1) (Table 1).

Table 1. ¹³ C N.m.r. spectral data for (1). ^a			
Carbon	Chemical shifts/ p.p.m. (Me ₄ Si=0)	Coupled with carbon	One-bond coupling constant/Hz
C-1	28.8	C-2 C-10	33.2
C-2	19.0 42 1	C-3	33.2
C-4	34.0	C-3	34.2
C-5	50.1	0.5	34.2
C-6 C-7	37.2	C-5 C-6	33.2 33.0
C-8	83.7	C-7 C-9	37.3 32.5
C-9	54.1	C-14 C-11	39.4 33.9
C-10	51.0	C-5 C-9	29.8 31.5
C-11 C-12	22.5 38 8	C-11	32.4
C-13	68.4	Č-13	38.3
C-14	47.4	C-13	37.6
C-18	32.2	C-4	36.0
C-19 C-20	20.6 179.7	C-4 C-10	not measured

^a Chemical shifts were measured at 60 °C with respect to the lowfield triplet of $[{}^{2}H_{5}]$ pyridine (149.9 p.p.m.) and are given for Me₄Si = 0. The one-bond coupling constants are shown only once for all coupling pairs at that nucleus where the ${}^{1}J_{CC}$ values could be determined more precisely from the 1-dimensional 'INADEQUATE' experiment.

Figure 1. Section of the C-5, C-10, and C-9 signals from the 100.62 MHz 'INADEQUATE' ¹³C n.m.r. spectrum of (1). Satellites due to $J_{5,10}$ and $J_{10.5}$ and those due to $J_{10.9}$ and $J_{9,10}$ exhibit, respectively, strong ($J/\Delta \nu = 0.33$) and weak ($J/\Delta \nu = 0.11$) AB systems. Satellites due to $J_{10,20}$ cannot be detected (see text).

In order to obtain accurate one-bond ¹³C-¹³C coupling constants, the 1-dimensional 'INADEQUATE' spectrum of (1) was also recorded, at 60 °C, overnight, on the sample used in the 2-dimensional experiment. Maximum signal intensity was selected for ${}^{1}J_{CC} = 40$ Hz ($J\tau = 1/4$). A frequency range of 7353 Hz was used with a digital resolution of 0.22 Hz/ point. Resolution enhancement with the Gaussian multiplication procedure was applied.³ As a result of the good digital resolution and the assigned carbon-13 resonances via the 2dimensional spectrum, this experiment has permitted the determination of precise one-bond ¹³C-¹³C coupling constants for all linkages of (1) except for C-10-C-20 (Table 1 and Figure 1). The absence of satellite lines corresponding to the C-10-C-20 bond is the consequence of three factors: (a) the expected ${}^{1}J_{cc}$ value is considerably larger than 40 Hz for which the pulse sequence was optimized,1 (b) both carbons involved in this linkage have relatively long T_1 values,⁴ (c) the transmitter offset is about 140 p.p.m. away from the carbonyl signal, inducing a reduction of the efficiency of the spin-echo pulse sequence.

Based on these carbon-13 n.m.r. results structure (1) should be attributed to the new naturally occurring bis-nor-diterpene. The axial configuration of C-17 of (1) was assigned from its 28.0 p.p.m. chemical shift. Taking into account the deshielding *syn*-axial δ -effect⁵ on the signal position of C-17 of (1), originating from the C-8-oxygen bond, the 28.0 p.p.m. δ -value is consistent with the 25.3 p.p.m. chemical shift of the 1-methyl resonance in *trans*-1-methyl-4-t-butylcyclohexanol.⁶

The authors thank Professor Manuza Luiza Menezes, U.S.P., Brazil, for botanial identification of the plant furnishing (1).

Received, 31st January 1983; Com. 145

References

- 1 A. Bax, R. Freeman, and S. P. Kempsell, J. Am. Chem. Soc., 1980, 102, 4849; J. Magn. Reson., 1980, 41, 349.
- 2 A. Bax, R. Freeman, and T. A. Frenkiel, J. Am. Chem. Soc., 1981, 103, 2102.
- 3 A. G. Ferrige and J. C. Lindon, J. Magn. Reson., 1978, 31, 337. 4 A. C. Pinto, S. K. do Prado, R. Braz Filho, W. E. Hull, A.
- Neszmelyi, and G. Lukacs, Tetrahedron Lett., 1982, 5267.
- 5 S. H. Grover and J. B. Stothers, *Can. J. Chem.*, 1974, 52, 870.
 6 J. B. Stothers, 'Carbon-13 NMR Spectroscopy,' Academic Press, New York, 1972.